

Improvement of Self-Timed Pipeline's Immunity of Soft Errors

Y. Shikunov, Y. Stepchenkov, Y. Diachenko, Y. Rogdestvenski, D. Diachenko

Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences

Content

- Reasons for digital circuits' failures
- Self-timed circuit features
- Self-timed pipeline structure
- Self-timed pipeline's failure tolerance
- Improvement of the self-timed pipeline's tolerance
 - Combinational part
 - Register
 - Indication subcircuit
- Conclusions

Self-Timed Circuit's Features

An absence of a global clock tree,
The logic cells' delays determine their performance in any operating conditions,
Two-phase operation mode and a requestacknowledge interaction based on indication signals confirming the completion of circuit switching,

•Less sensitivity to soft error than their synchronous counterparts,

•Complete constant failures self-checking.

Self-Timed Pipeline

- CP Combinational Part
- •OR Output Register
- CIP Combinational Indication Part
- •RIP Register Indication Part

Dual-Rail Coding With Null Spacer

Coded state	X	XB	Phase
Bit "0"	0	1	Working
Bit "1"	1	0	Working
Spacer	0	0	Spacer
Anti-spacer	1	1	Forbidden

ElConRus2021

Dual-Rail Signal Indication

XOR2 and XNOR2 mask anti-spacer

Null input spacer

Self-Timed XOR2 Implementations

$\mathbf{Y} = \mathbf{A} \oplus \mathbf{B}$

CMOS transistors

Standard cells

 $V(Y) = V_{th.p} \text{ at } A = B = 0$ 9 of 22

Self-Timed XOR2 and XNOR2 $Y = A \oplus B$ $Y = \overline{A \oplus B}$

Mn and Mp transistors repair logical levels

ST pipeline's combinational part tolerance: $72\% \rightarrow 98\%$

ElConRus2021

ST Pipeline's Register Bit

- Dual-rail input (X, XB) and output (Y, YB)
- Stores both working state and spacer
- Indication cell XOR
- Minimal complexity

Improved C-element

Input "C" prevents sticking in anti-spacer state Y=1

ElConRus2021

Improved Register Bit

Improved C-elements and cross-feedbacks prevent sticking in anti-spacer state Y=YB=1

Dual Interlocked Cell (DICE) C-element

ElConRus2021

Indication Subcircuit

First cascade

Tree of C-elements

Indication Subcircuit

ElConRus2021

In-Phase C-element

ElConRus2021

Soft Error Tolerant Indication Subcircuit

In-phase to Unary Converter

ElConRus2021

$S_R \approx S_{IS} \approx 0.5 \cdot S_{CP} \implies SET = 96\%$

ElConRus2021

Conclusions

- One additional transistor in the C-element circuit and cross-links between C-elements prevent "sticking" register bit in the anti-spacer state
- DICE-like C-element is entirely immune to a single soft error in its internal nodes
- Proposed circuitry and layout techniques, and using in-phase inputs and outputs in the DICE-like Celement improve self-timed pipeline's overall tolerance to single soft errors to a level of not less than 96%

ElConRus2021

- Director: Academician Igor Sokolov
- Address: Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44 b.2 Vavilova str., Moscow, 119333
 - Phone: +7 (495) 137 34 94
 - Fax: +7 (495) 930 45 05
 - E-mail: isokolov@ipiran.ru
 - Speaker: Shikunov Yury

yishikunov@gmail.com