CELL LIBRARY FOR SPEED-INDEPENDENT VLSI

Stepchenkov Yuri, Zakharov Victor, Rogdestvenski Yuri, <u>Diachenko Yuri</u>, Morozov Nickolai, Stepchenkov Dmitri

> Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, IPI RAS, Moscow, Russian Federation

IPI RAS

Contents

Main features of SI-circuits Content of the cell library Interface cells Cells with forced outputs Indication cells Characterization and approbation Conclusions

IPI RAS

Main features of SI-circuits

 Speed-Independent (SI) circuits excel synchronous ones in:
Robustness to variation of electrophysical parameters or to their degradation

Operation safety and validity of the data processing results
High performance, that is maximum possible at any real environment and IPI Rata EWDTS-2015

Peculiarities of SI-circuits

- Two-phase discipline: work and spacer (pause)
- Indication of each operation phase
- Acknowledge-require technique of interaction between SI-units
- An arbitrary duration of each phase

IPI RAS

Specific circuit base for SI-units

All cells for designing SIcircuits must be single-stage one or have an output indicating all interior signals Their inputs and outputs take only logical 0 and 1 values

IPI RAS

Library's content

Combinational logic Triggers Counters Multiplexers Adders Code converters Indicators

Bit of binary counter

Interface cells: latch

D - unary data input; E - write enable input with null spacer; R asynchronous reset EWDTS-2015 9

Interface cells: flip-flop

D - unary data input; E - write enable input with null spacer; R asynchronous reset IPI RAS 10

Interface cells: flip-flop

Cells with forced output: latch

Cells with forced output: flip-flop

R, S - dual-rail data input; C - self-timed reset; Q, QB - forced output IPI RAS EWDTS-2015 13

Indication cells: hysteresis triggers

10, 11 - indication signals EWDTS-2015

IPI RAS

Indication cells: combined logic

IO, II - indication signals; B*,B*B - bi-phase data signals IPI RAS EWDTS-2015

Library characterization

 Self-timed feature analysis (ASPECT)
Automatic calculation of the electrical and timing parameters (STERH)

 Model files in LIBERTY and Verilog formats (STERH)
Integration with modern industrial IPI ADS EWDTS-2015 16

Cell library approbation

Various CMOS standard processes: *1.5 µm for semicustom circuits (Microcore, 14 000 transistors), ♦ 0.18 µm for semicustom circuits (Microcore, 17 000 transistors), ♦ 0.18 µm for custom VLSI (Square-Root & Divider, 77 000 transistors), *65 nm for custom VLSI (Square-Root & Divider, 77 000 transistors; Fused Multiply-Add Unit, 315 000 transistors)

Increase of steady operation range (10-15 times); decrease of energy consumption (30-50%); rise of performance (100-250%); detection of constant malfunctions (up to 100%)

Conclusions

Suggested library: * Corresponds to the criteria of building SI-circuits, Contains more than 200 library cells expanding standard cell libraries, Provides really SI solutions for interfacing with synchronous environment and for driving large loads

IPI RAS

EWDTS-2015

Thanks

IPI RAS

Contacts

Director: academician Sokolov I.A. Address: Institute of Informatics Problems of the Federal Research Center "Computer" Science and Control" of the Russian Academy of Sciences (IPI RAS), Moscow, Russian Federation, 119333, Vavilova str., 44, b.2 ■ Tel: +7 (495) 137 34 94 ■ Fax: +7 (495) 930 45 05 • E-mail: Stepchenkov Y.A., tel. +7 (495) 671 15 20, Ystepchenkov@ipiran.r 21