FUNCTIONAL APPROACH IN SELF-TIMED CIRCUIT DESIGN

Plekhanov Leonid, Zakharov Victor, Stepchenkov Yuri

Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, IPI RAS, Moscow, Russian Federation

IPI RAS

Contents

Event-driven analysis of SI-circuits Functional analysis of SI-circuits: Low level analysis High level analysis Synthesis of SI-circuits Conclusions **IPI RAS EWDTS-2015**

Essence of event-driven analysis Analyzed circuit should be presented in a closed feed-back form: only outp backs

Analyzed circuit

Feed-back

IPI RAS

Problems of event-driven analysis

Analysis is carried out only for one initial state – completeness is far of practical needs

Exponential dependence of the computational complexity on the number of elements and degree of parallelism

Event-driven analysis: Change Diagrams, part 1

	Micro-pipeline		Asynchronous	
Circuit	control queue		switch	
CAD Tool	Time	Memory /	Time,	Memory
	, sec	disk swaping	sec	
TRANAL	180	400 Kbytes	0.28	100
		/+		Kbytes
VERDECT	300	22 Mbytes /-	0.99	122
				Kbytes
TRASPEC	1	100 Kbytes	0.38	100
		/-		Kbytes

IPI RAS

Event-driven analysis: Change Diagrams, part 2

CAD	Paral-	Circuit	Memory for	Number
tools	lelism	level	state, Gbyte	of states
				per hour,
				106
TRANAL	5-6	cells	0.64	0.3
BTRAN	12-16	modules	2	1.0
ASYAN	18 -24	blocks	48	200

IPI RAS

Event-driven analysis: software tools from IPI RAS

Unit's type – capacity /	Analysis time, min ^{*)}		
parallelism	BTRAN	ASYAN	ASPECT
Binary counter – 4 / 1	0.01	0.12	0.02
Shift register – 4 / 4	0.21	0.97	0.02
Microcore – 4 / 47	-	0.53	0.02
ALU - 64 / 293	-	-	0.14
Divider – 16 / 330	-	-	1588
Divider – 64 / 1024	-	-	27360

*) for single state of inputs and triggers

IPI RAS

Functional approach

Analyzes the equations of circuits Deals with the open circuits Takes into account a nature of speed-independent circuits: ST-coding of data Two-phase operation discipline (work phase and spacer one) Signal indication, and so on

Functional approach: SI circuit definition An open circuit possessing two features:

Absence of races for any finite delay of the elements
Indicativeness of all inputs, outputs and internal signals

IPI RAS

Functional approach: hierarchical analysis

Top level High levels: structural **Block N** Block 1 description Lower level: Unit 2 Unit 1 . . . Unit M logical function

IPI RAS

EWDTS-2015

description

Low level analysis

IPI RAS

Low level analysis: races control

IPI RAS

Low level analysis: races control

IPI RAS

EWDTS-2015

13

Low level analysis: races control

IPI RAS

Low level analysis: connection control

IPI RAS

EWDTS-2015

15

High level analysis: checking lists & attributes Hierarhical approach on base of verified low level units Verifying connections Verifying indicativeness Verifying absence of races Preparing descriptions for next analysis level

IPI RAS

Functional analysis via Event-driven analysis

llait's tura	Analysis time, min		
capacity / parallelism	ASPECT ^{*)}	FAZAN	
Microcore – 4 / 47	0.02	0.01	

*) for single state of inputs and triggers

IPI RAS

Synthesis of SI circuits

- Based on logical functions that are not self-timed
- Balanced by performance and complexity
- Minimized indication circuit
- Software tools

Synthesis of SI circuits $F1 = A \land B, F2 = B \land C$

 $V1 = A \land B, V2 = B \land C,$ $VB1 = AB \lor BB, VB2 = BB \lor CB,$ indications $I1 = A \lor AB, I2 = B \lor C \lor BB \land CB$

IPI RAS

Conclusions

 The functional approach provides the following advantages:
Analysis of SI-feature of open circuits
Hierarchical SI-analysis of VLSI and SoC
Synthesis of combinational circuits with dual-rail signals by given criterion of performance or complexity

Thanks

IPI RAS

Contacts

 Director: academician Sokolov I.A.
Address: Institute of Informatics Problems of the Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences (IPI RAS), Moscow, Russian Federation, 119333, Vavilova str., 44, b.2
Tel: +7 (495) 137 34 94
Fax: +7 (495) 930 45 05
E-mail: ISokolov@ipiran.ru

 Stepchenkov Y.A., tel. +7 (495) 671 15 20, Ystepchenkov@ipiran.ru

IPI RAS

