# Раздел 10. Четырехканальный приемопередатчик дифференциальных сигналов

# Содержание

| 10.1. | Назначение                                            |  |
|-------|-------------------------------------------------------|--|
| 10.2. | Общие сведения                                        |  |
|       | 10.2.1. Изображение и обозначение микросхемы          |  |
|       | 10.2.2. Назначение выводов                            |  |
|       | 10.2.3. Упрощенная структура микросхемы               |  |
| 10.3. | Параметры микросхемы                                  |  |
|       | 10.3.1. Номинальные значения электрических параметров |  |
|       | 10.3.2. Динамические параметры                        |  |
|       | 10.3.3. Параметры гистерезиса приемников              |  |
|       | 10.3.4. Предельные режимы эксплуатации                |  |
| 10.4. | Стойкость к воздействию внешних факторов              |  |
|       | 10.4.1. Механические факторы                          |  |
|       | 10.4.2. Климатические факторы                         |  |
|       | 10.4.3. Специальные факторы и надежность              |  |
| 10.5. | Корпус                                                |  |

#### 10.1. Назначение

Микросхема 5529TP015-803 (далее по тексту «микросхема») представляет собой четыре канала приема-передачи дифференциальных сигналов. Каждый канал содержит связку из приемника (высокочувствительного аналогового компаратора) и LVDS передатчика. Приемник имеет возможность регулировки гистерезиса по входным дифференциальным входам.

## 10.2. Общие сведения

Микросхема разрешена для применения в специальной аппаратуре и обладает следующими возможностями:

- Напряжение питания от 2,7 В до 3,63 В.
- 4 независимых канала с приемниками и передатчиками дифференциальных сигналов.
- Общая для всех каналов настройка гистерезиса приемника.
- Радиационностойкая технология.

## 10.2.1. Изображение и обозначение микросхемы

На рис. 10-1 (стр. 10-2) приведено рекомендуемое условное графическое изображение микросхемы.

| 03 |       |      | 27         |
|----|-------|------|------------|
|    | IP1   | OP1  |            |
| 04 | IN1   | ON1  | 26         |
| 05 | IP2   | OP2  | 25         |
| 06 | —     |      | 24         |
|    | IN2   | ON2  |            |
| 07 | IP3   | OP3  | 23         |
| 80 | _     |      | 22         |
| 09 | IN3   | ON3  | 21         |
|    | IP4   | OP4  |            |
| 10 | IN4   | ON4  | 20         |
| 12 |       |      | 01         |
|    | A0    | VCCO |            |
| 13 | A1    | GNDI | 02         |
| 17 | A2    | VCCI | 14         |
| 18 |       |      | 15         |
|    | A3    | GNDO |            |
| 11 | TEST1 | vcco | 16         |
| 19 |       |      | 28         |
|    | TEST2 | GNDO | <u>_</u> _ |

Рис. 10-1. Условное графическое изображение микросхемы

Обозначение микросхемы при заказе: 5529TP015-803 AEHB.431260.290 ТУ группа исполнения А или Б, корпус МК 5123.28-1.01 ТАСФ.301176.014 ТУ, карта заказа ГАВЛ.431268.803Д16.

#### 10.2.2. Назначение выводов

В табл. 10-1 (стр. 10-2) приведено краткое описание выводов микросхемы.

Таблица 10-1. Описание выводов микросхемы (часть 1 из 2)

| Номер | Имя  | Тип <sup>(1)</sup> | Буфер <sup>(1)</sup> | Описание                                      |  |
|-------|------|--------------------|----------------------|-----------------------------------------------|--|
| 1     | VCCO | Р                  | _                    | Питание выходных драйверов.                   |  |
| 2     | GNDI | Р                  | _                    | «Земля» (Общий 0 В) входных компараторов.     |  |
| 3     | IP1  | IM                 |                      | Неинвертирующий вход компаратора 1-го канала. |  |
| 4     | IN1  | IM                 |                      | Инвертирующий вход компаратора 1-го канала.   |  |
| 5     | IP2  | IM                 |                      | Неинвертирующий вход компаратора 2-го канала. |  |
| 6     | IN2  | IM                 |                      | Инвертирующий вход компаратора 2-го канала.   |  |
| 7     | IP3  | IM                 |                      | Неинвертирующий вход компаратора 3-го канала. |  |
| 8     | IN3  | IM                 |                      | Инвертирующий вход компаратора 3-го канала.   |  |

Таблица 10-1. Описание выводов микросхемы (часть 2 из 2)

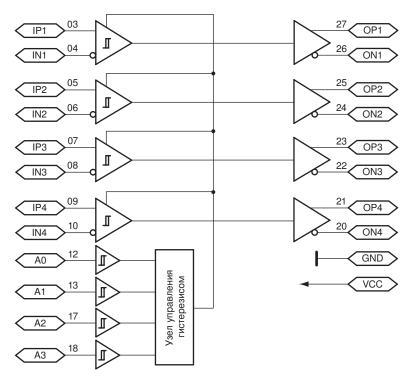
| Номер | Имя   | Тип <sup>(1)</sup> | Буфер <sup>(1)</sup> | Описание                                                                            |
|-------|-------|--------------------|----------------------|-------------------------------------------------------------------------------------|
| 9     | IP4   | IM                 |                      | Неинвертирующий вход компаратора 4-го канала.                                       |
| 10    | IN4   | IM                 |                      | Инвертирующий вход компаратора 4-го канала.                                         |
| 11    | TEST1 | _                  |                      | Вход выбора режима (высокий уровень— тестовый режим, низкий уровень— рабочий режим. |
| 12    | A0    | IM                 | TS1TTL               | Вход регистра управления гистерезисом.                                              |
| 13    | A1    | IM                 | TS1TTL               | Вход регистра управления гистерезисом.                                              |
| 14    | VCCI  | Р                  | _                    | Питание входных компараторов.                                                       |
| 15    | GNDO  | Р                  | _                    | «Земля» (Общий 0 В) выходных драйверов.                                             |
| 16    | VCCO  | Р                  | _                    | Питание выходных драйверов.                                                         |
| 17    | A2    | IM                 | TS1TTL               | Вход регистра управления гистерезисом.                                              |
| 18    | А3    | IM                 | TS1TTL               | Вход регистра управления гистерезисом.                                              |
| 19    | TEST2 | I                  |                      | Вход выбора режима (высокий уровень— тестовый режим, низкий уровень— рабочий режим. |
| 20    | ON4   | OM                 |                      | Инвертирующий выход драйвера 4-го канала.                                           |
| 21    | OP4   | OM                 |                      | Неинвертирующий выход драйвера 4-го канала.                                         |
| 22    | ON3   | OM                 |                      | Инвертирующий выход драйвера 3-го канала.                                           |
| 23    | OP3   | OM                 |                      | Неинвертирующий выход драйвера 3-го канала.                                         |
| 24    | ON2   | OM                 |                      | Инвертирующий выход драйвера 2-го канала.                                           |
| 25    | OP2   | OM                 |                      | Неинвертирующий выход драйвера 2-го канала.                                         |
| 26    | ON1   | OM                 |                      | Инвертирующий выход драйвера 1-го канала.                                           |
| 27    | OP1   | OM                 |                      | Неинвертирующий выход драйвера 1-го канала.                                         |
| 28    | GNDO  | Р                  | _                    | «Земля» (Общий 0 В) выходных драйверов.                                             |

#### Примечания к таблице.

- 1. Условные обозначения типа вывода: Р питание; І цифровой вход; ІМ цифровой вход, который можно использовать в режиме «холодного резерва»; ОМ цифровой выход, который можно использовать в режиме «холодного резерва»; TS1TTL буфер типа триггера Шмитта с характеристиками (табл. 10-5, стр. 10-7).
- 2. Тестовые режимы используются исключительно на этапах производственной проверки и при эксплуатации запрещены. На выводы TEST1 и TEST2 в процессе эксплуатации следует подать низкий уровень или Общий 0 В.
- 3. Входы компараторов неиспользуемых каналов допускается подключать к выводу GNDI, что не влияет на ток потребления микросхемы.

#### 10.2.3. Упрощенная структура микросхемы

Упрощенная структура микросхемы приведена на рис. 10-2 (стр. 10-4).


В состав микросхемы входят следующие основные узлы:

- 4 настраиваемых приемника дифференциального сигнала.
- 4 LVDS передатчика.
- Узел настройки гистерезиса приемников.

## 10.3. Параметры микросхемы

#### Номинальные значения электрических параметров

Номинальные значения электрических параметров микросхемы представлены в табл. 10-2 (стр. 10-4).



#### Примечание к рисунку.

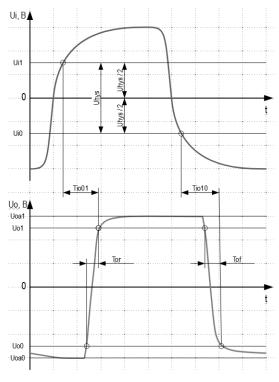
- 1. Выводы питания и земли показаны условно без нумерации.
- 2. Триггеры Шмитта с входами А3...А0 имеют фиксированные пороги срабатывания (табл. 10-5, стр. 10-7).

Рис. 10-2. Внутренняя структура микросхемы

Таблица 10-2. Номинальные значения электрических параметров (часть 1 из 2)

| Наименование параметра, единица и режим                                                                                  | Символ                                 | Норма па | раметра <sup>(1)</sup> | Температура               |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|------------------------|---------------------------|
| измерения                                                                                                                |                                        |          | не более               | среды <sup>(2)</sup> , °С |
| Pulvoriuse Harrawellike Hillerore Vinepula Ha Pulporev                                                                   | 11                                     | 833      | 1470                   | +25±10                    |
| Выходное напряжение низкого уровня на выводах ON4ON1 и OP4OP1, мВ (при U <sub>CC</sub> =3,3В, I <sub>OL</sub> =3,5 мА)   | U <sub>OL1</sub> ,<br>U <sub>OL2</sub> | 797      | 1575                   | -60<br>+85                |
| Выходное напряжение высокого уровня на выводах                                                                           |                                        | 778      | 1822                   | +25±10                    |
| ON4ON1 и OP4OP1, мВ (при U <sub>CC</sub> =3,3В, I <sub>OH</sub> =3,5 мА)                                                 | U <sub>OH1</sub> ,<br>U <sub>OH2</sub> | 605      | 1822                   | -60<br>+85                |
| Выходное напряжение высокого уровня на выводах ON4ON1 и OP4OP1, мВ (при U <sub>CC</sub> =2,0B, I <sub>OH</sub> =0,1 мА)  | U <sub>OH3</sub>                       | 800      | 2000                   | +25±10<br>-60<br>+85      |
| Выходное напряжение высокого уровня на выводах ON4ON1 и OP4OP1, мВ (при U <sub>CC</sub> =3,63В, I <sub>OH</sub> =0,1 мА) | U <sub>OH4</sub>                       | 2200     | 3630                   | +25±10<br>-60<br>+85      |
| Выходное дифференциальное напряжение передатчика, мВ (при $U_{CC}$ =3,3B ±10%, $R_L$ =100 Oм ±10%)                       | Uoa1,<br>Uoa0                          | 260      | 440                    | +25±10<br>-60<br>+85      |
| Выходное синфазное напряжение передатчика, В (при $U_{\rm CC}$ =3,3B ±10%)                                               |                                        | 1,00     | 1,40                   | +25±10<br>-60<br>+85      |

Таблица 10-2. Номинальные значения электрических параметров (часть 2 из 2)


| Наименование параметра, единица и режим                                                                                      | Символ                             | Норма па | раметра <sup>(1)</sup> | Температура               |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|------------------------|---------------------------|
| измерения                                                                                                                    | Символ                             | не менее | не более               | среды <sup>(2)</sup> , °С |
| Ток потребления динамический одного канала, мА (при $U_{CC}$ =3,63B, $R_L$ =100 Ом ±10%, $C_L$ =10 пФ ±10%, $F$ =200 Мбит/с) | I <sub>occ</sub>                   | _        | 8                      | +25±10<br>-60<br>+85      |
| Токи утечки низкого и высокого уровней на входе, мкА                                                                         |                                    | -1,0     | 1,0                    | +25±10                    |
| (при U <sub>CC</sub> =3,63B, U <sub>IH</sub> =U <sub>CC</sub> , U <sub>IL</sub> =0)                                          | I <sub>ILL</sub> ,I <sub>ILH</sub> | -3,0     | 3,0                    | -60<br>+85                |
| Ток доопределения внешнего вывода до высокого уровня, мА (при $U_{CC}$ =3,63B, $U_{IH}$ = $U_{CC}$ , $U_{IL}$ =0B)           | I <sub>RH</sub>                    | 0,01     | 2,0                    | +25±10<br>-60<br>+85      |
| Ток доопределения внешнего вывода до низкого уровня, мА (при $U_{CC}$ =3,63B, $U_{IH}$ = $U_{CC}$ , $U_{IL}$ =0B)            | I <sub>RL</sub>                    | 0,01     | 2,0                    | +25±10<br>-60<br>+85      |
|                                                                                                                              |                                    |          | 7                      | +25±10                    |
| Входная емкость, пФ                                                                                                          | C <sub>I</sub>                     | _        | 10                     | -60<br>+85                |
|                                                                                                                              |                                    |          | 7                      | +25±10                    |
| Выходная емкость, пФ                                                                                                         | C <sub>O</sub>                     | _        | 10                     | -60<br>+85                |
|                                                                                                                              |                                    |          | 7                      | +25±10                    |
| Емкость входа/выхода, пФ                                                                                                     | C <sub>I/O</sub>                   | _        | 10                     | -60<br>+85                |
| Электростатический потенциал, В.                                                                                             | U <sub>ESD</sub>                   | _        | 1000                   | +25 ±10<br>-60<br>+85     |

## Примечания к таблице.

- 1. Значения могут быть уточнены в карте заказа.
- 2. Погрешность задания температуры ±3°C, если не указано иное.

#### 10.3.2. Динамические параметры

Временная диаграмма переключения для одного канала микросхемы и его динамические параметры приведены на рис. 10-3 (стр. 10-6).



#### Примечания к рисунку.

- 1. Дифференциальное напряжение на входе приемника Ui=Uip—Uin, где Uip напряжение на неинвертирующем входе компаратора относительно вывода GNDI, а Uin аналогичное напряжение на его инвертирующем входе.
- 2. Ui1 и Ui0 пороговые значения Ui при переключения выходного напряжения передатчика Uo из 0 в 1 и из 1 в 0 соответсвенно, которые определяются настраиваемым значением гистерезиса.
- 3. Дифференциальное напряжения на выходе передатчика Uo=Uop-Uon, где Uop и Uon—напряжения на неинвертирующем и инвертирующем выводах передатчика. Uo0=0,8\*Uoa0, Uo1=0,8\*Uoa1.
- Тіо01 и Тіо10 задержки распространения сигнала от входа приемника до выхода передатчика при переключении из 0 в 1 и из 1 в 0 соответственно.
- Тог и Тоf фронт и спад сигнала на выходе передатчика.
- 6. Tio=(Tio01+Tio10)/2 средняя задержка распространения сигнала в канале.
- 7. Tio\_ub=|Tio01-Tio10| разбаланс задержек в канале при разных переключениях.
- Тіо\_skew[nm]=|Tio[n]-Tio[m]|, где n=1...4, m=1...4 и n!=m — перекос между задержками в разных каналах
- 9. Tio\_skew наибольший перекос из всех Tio\_skew[nm].

Рис. 10-3. Временные диаграммы канала

Критичными характеристиками микросхемы являются: разбаланс задержек распространения Tio\_ub и наибольший перекос задержек распространения Tio\_skew. По этим параметрам микросхемы делятся на 2 группы исполнения, что указывается в документации и на корпусе микросхемы (рис. 10-4, стр. 10-10). При напряжении питания U<sub>CC</sub>=2,97 В, температуре среды +55°C, Ui<50 мВ и нагрузке между выходами передатчика 100 Ом эти параметры должны соответствовать следующим ограничениям:

- для группы A Tio ub < 0,1 нс и Tio skew < 0,05 нс;</li>
- для группы Б 0,1 нс < Tio ub < 1,0 нс и 0,05 нс < Tio skew < 1,0 нс.

Номинальные динамические параметры микросхемы приведены в табл. 10-3.

Таблица 10-3. Номинальные значения динамических параметров (часть 1 из 2)

| Наименование параметра, единица и режим                                                                                                                                             | Символ          | Норма пар |          |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------|---------------------------|
| измерения                                                                                                                                                                           | CHIMBOIL        | не менее  | не более | среды <sup>(4)</sup> , °С |
| Задержка распространения сигнала от входа приемника до выходе передатчика, нс (при $U_{CC}$ =3,3B ±10%, $R_L$ =100 Om ±10%, $C_L$ =10 пФ ±10%,)                                     | Tio01,<br>Tio10 | -         | 5,00     | +25±10<br>-60<br>+85      |
| Средняя задержка распространения сигнала от входа приемника до выходе передатчика, нс (при $U_{CC}$ =3,3B $\pm 10\%$ , $R_L$ =100 Om $\pm 10\%$ , $C_L$ =10 $\Pi\Phi$ $\pm 10\%$ ,) | Tio             | _         | 5,00     | +25±10<br>-60<br>+85      |
| Разбаланс задержек распространения сигнала от входа приемника до выходе передатчика, нс (при $U_{CC}$ =3,3B $\pm 10\%$ , $R_L$ =100 Om $\pm 10\%$ , $C_L$ =10 пФ $\pm 10\%$ ,)      | Tio_ub          | _         | 0,10     | +25±10<br>-60<br>+85      |

Таблица 10-3. Номинальные значения динамических параметров (часть 2 из 2)

| Наименование параметра, единица и режим                                                                                                                                                    | Символ   | Норма пар | раметра <sup>(1)</sup> |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------------------------|---------------------------|
| измерения                                                                                                                                                                                  | CHMBOIL  | не менее  | не более               | среды <sup>(4)</sup> , °С |
| Нибольший перекос между задержками распространения сигнала от входа приемника до выходе передатчика в разных каналах, нс (при $U_{CC}$ =3,3B ±10%, $R_L$ =100 Oм ±10%, $C_L$ =10 пФ ±10%,) | Tio_skew |           | 0,05                   | +25±10<br>-60<br>+85      |
| Длительность фронта и спада сигнала выходе передатчика, нс (при $U_{CC}$ =3,3B ±10%, $R_L$ =100 Oм ±10%, $C_L$ =10 пФ ±10%,)                                                               | Tor, Tof |           | 1,50                   | +25±10<br>-60<br>+85      |

#### Примечания к таблице.

- 1. Значения могут быть уточнены в карте заказа.
- 2. В карте заказа могут устанавливаться другие динамические параметры с указанием метода контроля.
- 3. С учетом паразитных емкостей.
- 4. Погрешность задания температуры ±3°C, если не указано иное.

#### 10.3.3. Параметры гистерезиса приемников

Настройка гистерезиса приемников производится заданием статических цифровых уровней на входах АЗ...АО, как показано в табл. 10-4.

Таблица 10-4. Зависимость гистерезиса приемника от кода на входах АЗ...АО

| Процицију иод на рустау <b>А</b> 2 — <b>А</b> 0 | Значение гисте           | резиса Uhys, мВ          |
|-------------------------------------------------|--------------------------|--------------------------|
| Двоичный код на входах АЗА0                     | Напряжение питания 2,7 В | Напряжение питания 3,6 В |
| 0000                                            | 22                       | 29                       |
| 0001                                            | 21                       | 28                       |
| 0010                                            | 20                       | 26                       |
| 0011                                            | 19                       | 25                       |
| 0100                                            | 18                       | 24                       |
| 0101                                            | 17                       | 22                       |
| 0110                                            | 16                       | 21                       |
| 0111                                            | 15                       | 19                       |
| 1000                                            | 15                       | 18                       |
| 1001                                            | 14                       | 17                       |
| 1010                                            | 13                       | 16                       |
| 1011                                            | 12                       | 14                       |
| 1100                                            | 10                       | 13                       |
| 1101                                            | 9                        | 11                       |
| 1110                                            | 8                        | 10                       |
| 1111                                            | 7                        | 9                        |

На входах A3...A0 используются триггеры Шмитта типа TS1TTL с фиксированными порогами срабатывания, зависящими только от напряжения питания. Параметры триггеров приведены в табл. 10-5

Таблица 10-5. Параметры триггеров Шмитта типа TS1TTL

| Наименование параметра и единица измерения       | Значение    |      |      |      |
|--------------------------------------------------|-------------|------|------|------|
| Напряжение питания, В                            | 2,7 3,0 3,3 |      | 3,63 |      |
| Верхний порог срабатывания (переход из 0 в 1), В | 1,49        | 1,59 | 1,73 | 1,85 |
| Нижний порого срабатывания (переход из 1 в 0), В | 1,24        | 1,38 | 1,52 | 1,67 |
| Величина гистерезиса, В                          | 0,25        | 0,21 | 0,21 | 0,18 |
| Задержка фронта (переход из 0 в 1), пс           | 570         |      |      |      |
| Задержка спада (переход из 1 в 0), пс            | 541         |      |      |      |

#### 10.3.4. Предельные режимы эксплуатации

Предельные и предельно допустимые режимы эксплуатации — это внешние по отношению к микросхеме электрические параметры, в пределах значений которых допускается эксплуатация микросхемы. Превышение предельных режимов может привести к отказу микросхемы (табл. 10-6).

Таблица 10-6. Предельно допустимые и предельные режимы эксплуатации

|                                            |                 | Значения параметров  |                 |                     |                                   |  |  |
|--------------------------------------------|-----------------|----------------------|-----------------|---------------------|-----------------------------------|--|--|
| Наименование параметра и единица измерения | Символ          | преде<br>допустимы   |                 | предельный<br>режим |                                   |  |  |
|                                            |                 | не менее             | не более        | не менее            | не более                          |  |  |
| Напряжение питания, В                      | U <sub>CC</sub> | 2,7                  | 3,63            | -0,4                | 4,0                               |  |  |
| Входное напряжение низкого уровня, В       | U <sub>IL</sub> | _                    | 0,4             | -0,4                |                                   |  |  |
| Входное напряжение высокого уровня, В      | U <sub>IH</sub> | U <sub>CC</sub> -0,4 | U <sub>CC</sub> | _                   | $U_{\rm CC}^{+0,4}$<br>(HO < 4,0) |  |  |
| Выходной ток низкого уровня, мА            | I <sub>OL</sub> | _                    | 12,0            | _                   | 24,0                              |  |  |
| Выходной ток высокого уровня, мА           | I <sub>OH</sub> | _                    | 12,0            | _                   | 24,0                              |  |  |
| Ёмкость нагрузки, пФ                       | C <sub>L</sub>  | _                    | 150             | _                   | 250                               |  |  |

## 10.4. Стойкость к воздействию внешних факторов

#### 10.4.1. Механические факторы

В табл. 10-7 приведены характеристики стойкости микросхем серии 5529 к внешним механическим воздействиям.

Таблица 10-7. Стойкость к внешним механическим воздействиям

| Ростойотрио                          | Характеристики и единицы                                    | Значения параметров |             |  |
|--------------------------------------|-------------------------------------------------------------|---------------------|-------------|--|
| Воздействие                          | измерения                                                   | не менее            | не более    |  |
| Синусоидальные вибрации              | Диапазон частот, Гц                                         | 1                   | 5000        |  |
| Синусоидальные виорации              | Амплитуда ускорения, м/с² (g)                               | _                   | 400(40)     |  |
| Удары одиночного<br>действия в любом | Амплитуда пикового ударного ускорения, м/c <sup>2</sup> (g) |                     | 15000(1500) |  |
| направлении                          | Длительность действия ударного<br>ускорения, мс             | 0,1                 | 2,0         |  |
| Удары многократного                  | Амплитуда пикового ударного ускорения, м/c <sup>2</sup> (g) |                     | 1500(150)   |  |
| действия в любом<br>направлении      | Длительность действия ударного<br>ускорения, мс             | 1                   | 5           |  |
| Линейное ускорение                   | Амплитуда ускорения, м/с <sup>2</sup> (g)                   |                     | 5000(500)   |  |
| Aures and and and a                  | Диапазон частот, Гц                                         | 50                  | 10000       |  |
| Акустический шум                     | Уровень звукового давления, дБ                              | _                   | 170         |  |

#### 10.4.2. Климатические факторы

В табл. 10-8 приведены характеристики стойкости микросхем серии 5529 к внешним климатическим воздействиям. Требования по устойчивости к воздействию статической пыли не предъявляются.

Таблица 10-8. Стойкость к климатическим воздействиям (часть 1 из 2)

| Наименование параметра, единица измерения | Значения параметров |          |
|-------------------------------------------|---------------------|----------|
|                                           | не менее            | не более |
| Повышенное рабочее давление, атм          | _                   | 3        |

Таблица 10-8. Стойкость к климатическим воздействиям (часть 2 из 2)

| Hausananan anasana an anasanan an | Значения параметров |          |
|--------------------------------------------------------------------|---------------------|----------|
| Наименование параметра, единица измерения                          | не менее            | не более |
| Повышенная рабочая температура среды, °С                           | _                   | +85      |
| Повышенная предельная температура среды, °С                        | _                   | +125     |
| Пониженная рабочая температура среды, °С                           | -60                 | _        |
| Пониженная предельная температура среды, °С                        | -60                 | _        |
| Изменение температуры среды в пределах, °С                         | -60                 | +125     |
| Повышенная относительная влажность, % (при температуре +35°C)      | _                   | 98       |

## 10.4.3. Специальные факторы и надежность

В табл. 10-8 приведены характеристики стойкости микросхемы к внешним специальным воздействиям.

Таблица 10-9. Стойкость к внешним специальным воздействиям

| Виды специальных<br>факторов | Характеристики                         | Значения характеристик                                                           |
|------------------------------|----------------------------------------|----------------------------------------------------------------------------------|
| 7.И                          | 7.И <sub>1</sub>                       | 5Y <sub>C</sub>                                                                  |
|                              | 7.И <sub>6</sub>                       | 0,5•5У <sub>C</sub>                                                              |
|                              | 7.И <sub>7</sub>                       | 0,2•5У <sub>C</sub>                                                              |
|                              | 7.И <sub>8</sub>                       | 4Y <sub>C</sub>                                                                  |
| 7.C                          | 7.C <sub>1</sub>                       | 5Y <sub>C</sub>                                                                  |
| 7.0                          | 7.C <sub>4</sub>                       | 1,5•5У <sub>C</sub>                                                              |
|                              | 7.K <sub>1</sub>                       | 2,6•1K                                                                           |
| 7.K                          | 7.K <sub>4</sub>                       | 2,5•1K                                                                           |
|                              | $(7.K_1 + 7.K_4)$                      | 2,5•1K                                                                           |
|                              | 7.K <sub>11</sub> (7.K <sub>12</sub> ) | 64 МэВ•см <sup>2</sup> /мг<br>по катастрофическим отказам и тиристорному эффекту |

**Примечание к таблице.** Требования по стойкости к воздействию специальных факторов с характеристиками по ГОСТ РВ 20.39.414.2, а также параметры-критерии годности к воздействию специальных факторов, для микросхем, содержащих аналоговые блоки, могут быть указаны в картах заказа.

В табл. 10-10 приведены характеристики надежности.

Таблица 10-10. Характеристики надежности

| Vanautanuatuua a Ruuulla u vananua uahanaluus                                                                              | Значения параметров |          |
|----------------------------------------------------------------------------------------------------------------------------|---------------------|----------|
| Характеристика, единица и условия измерения                                                                                | не менее            | не более |
| Минимальная наработка, час (при температуре среды не более +65+5 °C)                                                       | 140000              | _        |
| Минимальная наработка в облегченных режимах, час (при $U_{CC}$ =3B±5%; $I_{OL}$ , $I_{OH}$ < 50% от величин, указанных в ) | 200000              | _        |

## 10.5. Корпус

Микросхема изготавливается в керамическом корпусе типа МК 5123.28-1.01. Чертеж корпуса приведен на рис. 10-4.

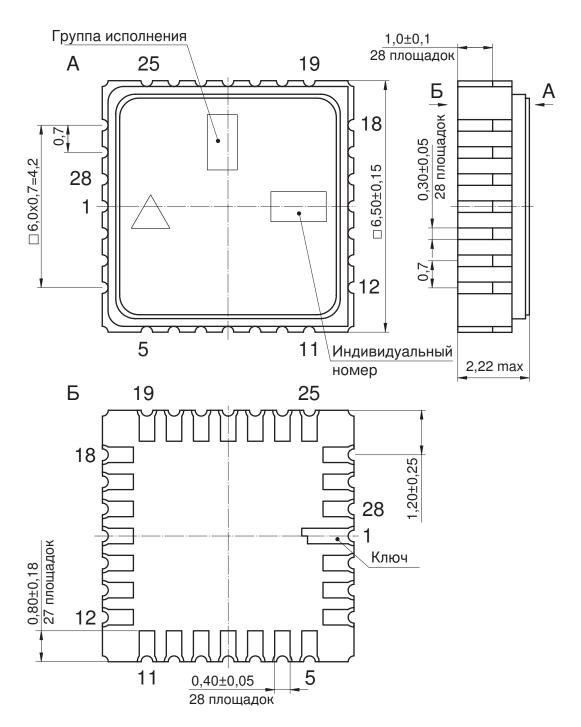



Рис. 10-7. Корпус микросхемы